Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(5): e26811, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38444485

RESUMEN

The incidence of antimicrobial resistance (AMR) in the environment is often overlooked and leads to serious health threats under the One Health paradigm. Infection with extended-spectrum ß-lactamase (ESBL) producing bacteria in humans and animals has been widely examined, with the mode of transmission routes such as food, water, and contact with a contaminated environment. The purpose of this study was to determine the occurrence and molecular characteristics of resistant Salmonella enterica (S. enterica) (n = 59) and Escherichia coli (E. coli) (n = 392) isolated from produce commodities collected from fresh markets and supermarkets in Bangkok, Thailand. In this study, the S. enterica isolates exhibited the highest prevalence of resistance to tetracycline (11.9%) and streptomycin (8.5%), while the E. coli isolates were predominantly resistant to tetracycline (22.5%), ampicillin (21.4%), and sulfamethoxazole (11.5%). Among isolates of S. enterica (6.8%) and E. coli (15.3%) were determined as multidrug resistant (MDR). The prevalence of ESBL-producing isolates was 5.1% and 1.0% in S. enterica and E. coli, respectively. A minority of S. enterica isolates, where a single isolate exclusively carried blaCTX-M-55 (n = 1), and another isolate harbored both blaCTX-M-55 and blaTEM-1 (n = 1); similarly, a minority of E. coli isolates contained blaCTX-M-55 (n = 2) and blaCTX-M-15 (n = 1). QnrS (11.9%) and blaTEM (20.2%) were the most common resistant genes found in S. enterica and E. coli, respectively. Nine isolates resistant to ciprofloxacin contained point mutations in gyrA and parC. In addition, the odds of resistance to tetracycline among isolates of S. enterica were positively associated with the co-occurrence of ampicillin resistance and the presence of tetB (P = 0.001), while the E. coli isolates were positively associated with ampicillin resistance, streptomycin resistance, and the presence of tetA (P < 0.0001) in this study. In summary, these findings demonstrate that fresh vegetables and fruits, such as cucumbers and tomatoes, can serve as an important source of foodborne AMR S. enterica and E. coli in the greater Bangkok area, especially given the popularity of these fresh commodities in Thai cuisine.

2.
Sci Rep ; 14(1): 4448, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396015

RESUMEN

The objective of this study was to evaluate the impact of dietary zinc supplementation in pre-weaned dairy calves on the phenotypic antimicrobial resistance (AMR) of fecal commensal bacteria. A repository of fecal specimens from a random sample of calves block-randomized into placebo (n = 39) and zinc sulfate (n = 28) groups collected over a zinc supplementation clinical trial at the onset of calf diarrhea, calf diarrheal cure, and the last day of 14 cumulative days of zinc or placebo treatment were analyzed. Antimicrobial susceptibility testing was conducted for Enterococcus spp. (n = 167) and E. coli (n = 44), with one representative isolate of each commensal bacteria tested per sample. Parametric survival interval regression models were constructed to evaluate the association between zinc treatment and phenotypic AMR, with exponentiated accelerated failure time (AFT) coefficients adapted for MIC instead of time representing the degree of change in AMR (MIC Ratio, MR). Findings from our study indicated that zinc supplementation did not significantly alter the MIC in Enterococcus spp. for 13 drugs: gentamicin, vancomycin, ciprofloxacin, erythromycin, penicillin, nitrofurantoin, linezolid, quinupristin/dalfopristin, tylosin tartrate, streptomycin, daptomycin, chloramphenicol, and tigecycline (MR = 0.96-2.94, p > 0.05). In E. coli, zinc supplementation was not associated with resistance to azithromycin (MR = 0.80, p > 0.05) and ceftriaxone (MR = 0.95, p > 0.05). However, a significant reduction in E. coli MIC values was observed for ciprofloxacin (MR = 0.17, 95% CI 0.03-0.97) and nalidixic acid (MR = 0.28, 95% CI 0.15-0.53) for zinc-treated compared to placebo-treated calves. Alongside predictions of MIC values generated from these 17 AFT models, findings from this study corroborate the influence of age and antimicrobial exposure on phenotypic AMR.


Asunto(s)
Antibacterianos , Antiinfecciosos , Animales , Bovinos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Zinc/farmacología , Escherichia coli , Farmacorresistencia Bacteriana , Antiinfecciosos/farmacología , Enterococcus , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Diarrea/microbiología , Compuestos Orgánicos/farmacología , Suplementos Dietéticos , Ciprofloxacina/farmacología
3.
PLoS One ; 8(6): e68127, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23826370

RESUMEN

There is substantial concern that microbial and nutrient pollution by cattle on public lands degrades water quality, threatening human and ecological health. Given the importance of clean water on multiple-use landscapes, additional research is required to document and examine potential water quality issues across common resource use activities. During the 2011 grazing-recreation season, we conducted a cross sectional survey of water quality conditions associated with cattle grazing and/or recreation on 12 public lands grazing allotments in California. Our specific study objectives were to 1) quantify fecal indicator bacteria (FIB; fecal coliform and E. coli), total nitrogen, nitrate, ammonium, total phosphorus, and soluble-reactive phosphorus concentrations in surface waters; 2) compare results to a) water quality regulatory benchmarks, b) recommended maximum nutrient concentrations, and c) estimates of nutrient background concentrations; and 3) examine relationships between water quality, environmental conditions, cattle grazing, and recreation. Nutrient concentrations observed throughout the grazing-recreation season were at least one order of magnitude below levels of ecological concern, and were similar to U.S. Environmental Protection Agency (USEPA) estimates for background water quality conditions in the region. The relative percentage of FIB regulatory benchmark exceedances widely varied under individual regional and national water quality standards. Relative to USEPA's national E. coli FIB benchmarks-the most contemporary and relevant standards for this study-over 90% of the 743 samples collected were below recommended criteria values. FIB concentrations were significantly greater when stream flow was low or stagnant, water was turbid, and when cattle were actively observed at sampling. Recreation sites had the lowest mean FIB, total nitrogen, and soluble-reactive phosphorus concentrations, and there were no significant differences in FIB and nutrient concentrations between key grazing areas and non-concentrated use areas. Our results suggest cattle grazing, recreation, and provisioning of clean water can be compatible goals across these national forest lands.


Asunto(s)
Agricultura , Bovinos , Conservación de los Recursos Naturales , Recreación , Calidad del Agua , Animales , California , Estudios Transversales , Escherichia coli , Heces/química , Heces/microbiología , Bosques , Herbivoria , Estudios Longitudinales , Nitratos/análisis , Nitrógeno/análisis , Fosfatos/análisis , Fósforo/análisis , Ríos , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA